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Deliverable description  
 
The main objective of this deliverable is to develop algorithms and methods for 
characterising the resonances in grid connected VSC systems. 
 
The interaction between the controller of power converters and poorly damped AC 
networks are identified causes of resonance oscillatory stability phenomena. Two methods 
to model grid-connected VSC systems to study stability are investigated: the state-space 
and the impedance based model. Validation has been carried out between the two 
methodologies by analyzing eigenvalues and singular values of the system. Furthermore, 
a time-domain simulation has been done to validate the state-space model with a non-
linear MATLAB/Simulink model. 
 
The details of the performed work are given in the attached paper submitted for publication, 
while the models are at UPC and available to the consortium members upon request. 
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On resonance instabilities in VSCs connected to weak grids
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SUMMARY

This paper addresses the resonance oscillatory stability phenomena studied in the literature and
reported by network operators in grid-connected VSC systems. Negative interactions have been
observed at different frequencies in these systems, causing the tripping of power converters
(e.g. wind turbines or HVDC applications). The interaction between the controller of power
converters and poorly damped AC networks are identified causes of these events.
This paper analyses two methods to model grid-connected VSC systems applied in the literature
to study stability: the state-space and the impedance based model. Validation has been carried
out between the two methodologies by analyzing eigenvalues and singular values of the system.
Furthermore, a time-domain simulation has been done to validate the state-space model with a
non-linear MATLAB/Simulink model.
The stability is studied in a base case system with a grid-connected VSC to the main AC grid
via an LC circuit. A sensibility analysis of the strength of the grid and an analysis of sub-
synchronous and harmonic oscillatory resonances is carried out.
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1 INTRODUCTION

Grid-connected voltage source converters (VSCs) have been used to connect renewable energy
resources located in remote areas where the short-circuit ratio (SCR) is small (SCR below 4),
defined as weak grids. The interaction of these passive components with active elements has
been reported to create oscillatory instabilities [1], [2], [3]. According to the frequency range
this phenomena happens, they can be categorized into two large groups: harmonic and near-
synchronous oscillatory instabilities.
Near-synchronous instabilities occur when the electrical network exchanges energy with the
mechanical system of generators at one or more frequencies close to the synchronous fre-
quency. However, some instabilities do not involve a mechanical interaction of any kind such
as SSCI (Subsynchronous Control Interactions), where the interaction is between the control
of the converter and elements of the weak network [4], [5]. According to the range of fre-
quency, near-synchronous instabilities can be further be categorized into super-synchronous
and sub-synchronous. Super-synchronous oscillations range 55 to 100 Hz and sub-synchronous
oscillations range 25 to 45 Hz [6]. These type of instabilities might cause shaft fatigues and
tripping of generators [3], [7].
Harmonics instabilities are caused by unstable or marginally stable controllers. Instabilities
happen when the VSC control interacts with poorly damped resonances. The range of these
instabilities is 0.1 to 2 kHz, and they might damage or reduce the life expectancy of sensitive
equipment [1] and [3]. Frequent tripping of turbines and converters have also been reported [8].
Methods to model grid-connected VSC systems in order to study the instability phenomena used
in the literature are state-space and impedance based modelling. Impedance based modelling
is based on the impedance characterization of the system which can be expressed as a transfer
function in the s-domain [9], [10]. On the other hand, state-space modelling represents it as a
system of linear equations in the time domain, resulting in a state transition matrix which relates
the inputs and the outputs of the system.
Both methodologies and a complete non-linear simulation model for validation purposes have
been developed in MATLAB/Simulink . Results in the time domain have been compared be-
tween the non-linear and the state-space model. In addition, by computing the eigenvalues and
the singular values, both models, impedance and state-space, have been compared.
Finally, a stability study for sub-synchronous and harmonic oscillatory instabilities have been
carried out with both models. The analysis of sub-synchronous and harmonic resonances by
looking at the singular values and the effect of reducing the strength of the network (weak grid)
over the stability of the system.

2 SYSTEM MODEL

The testing system is a VSC power inverter connected to the grid through a LC circuit. The
model of the power converter is an averaged two level converter, which uses vector control
strategy with a cascaded controller (outer and inner loop) to control active power and AC voltage
as illustrated in Fig. 1.
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Figure 1: Grid-connected VSC system

2.1 Inner Loop Controller

The voltage at the converter terminals (∆Vf ) in the s-domain frame and the voltage reference
output (V c

f−re f ) of the inner loop are:

∆Vf = ∆V − (R f +L f s)∆I f + jωL f I f (1)
∆V c

f−re f = ∆V c−Fil(Ic
f−re f − Ic

f )+ jωL f Ic
f (2)

where Fil = kp−il + ki− il/s and the gains are kp−il =
R f

τil
and ki−il =

L f

τil
[11].

2.2 Outer loop controller

The outer loop controls active power with the q-component (icre f−q) and AC voltage controller
with the d-component (icre f−d) as described in [12] for VSCs connected to weak grids. The outer
loop control expressions are the following:

icre f−q = Fol p(Pre f −P), P =
3
2
(vc

qicq + vc
dicd) (3)

icre f−d = Folv(Vre f −V ), V =
√
(vc

q)
2 +(vc

d)
2 (4)

where Fol p = kp−ol p + ki−ol p/s and Folv = kp−olv + ki−olv/s .

2.3 Phase-locked loop

The Phase-Locked Loop (PLL) provides the rotation angle of the three-phase voltage phase to
relate the qd-component in the converter frame with the qd-components in the grid frame [13].
The angle can be obtained with the following expression.

∆θ =−
Gpll

s+∆V0Gpll
∆Vd,Gpll =

Fpll

s+V0−qFpll
(5)

where Fpll = kp−pll + ki−pll/s.
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3 IMPEDANCE BASED MODEL

The impedance based model characterizes the elements of the system into impedances ex-
pressed as transfer functions in the s-domain. The system has been divided in three impedances:
the convertes’s impedance considering the control structure (Zvsc); the shunt capacitance (Zc);
and the grid (Zg) impedances as displayed in Fig. 2. The dynamic expressions in the three phase
reference time-domain equations are expressed in the qd reference in the s-domain by applying
the following transformation.

ZC
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vgv

GRIDVSC

Zvsc
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Model
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Δvg-d Δif-d
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Figure 2: VSC grid-connected impedance based model (a) equivalent diagram (b) transfer function

[
vq vd

]T
=

2
3

e jωt [1 e j4π/3 e j2π/3
][

va vb vc
]T (6)

The transformation effect can be modelled as e j∆θ ≈ (1+ j∆θ), where ∆θ is the error angle
between the angle of the system and the converter, where the steady state value of ∆θ and v0−d
is expected to be 0. Therefore, the transformation and inverse transformation for voltage and
current can be expressed as:

[
∆V c

q
∆V c

d

]
=

[
1 0
0 1+GpllV0−q

][
∆Vq
∆Vd

]
(7)[

∆Ic
f−q

∆Ic
f−d

]
=

[
∆Vf−q
∆I f−d

]
+

[
0 −GpllV0−d
0 GpllV0−q

][
∆Vq
∆Vd

]
(8)[

∆Vf−q
∆Vf−d

]
=

[
∆V c

d−q
∆V c

d−d

]
+

[
0 GpllV0−d
0 −GpllV0−q

][
∆Vq
∆Vd

]
(9)

The current references can be defined as: ∆icre f−q = −Fol p∆P and ∆icre f−d = −Folv∆V , where
the small signal power (∆P) and ac voltage (∆V ) are the following:

∆P =
3
2
[(Ic

f 0−q∆V c
q +V c

0−q∆Ic
f−q + Ic

f 0−d∆V c
d +V c

0−d∆Ic
f−d)] (10)

∆V =
V c

0−q∆V c
q√

(V c
0−q)

2 +(V c
0−d)

2
+

V c
0−d∆V c

d√
(V c

0−q)
2 +(V c

0−d)
2

(11)

The output of the inner loop (voltage references) can be expressed as:

[
∆V c

re f−q
∆V c

re f−d

]
=

[
∆V c

h−q
∆V c

h−d

]
−Fil

[
∆Ic

re f−q
∆Ic

re f−d

]
+

[
Fil −ωL f

ωL f Fil

][
∆Ic

f−q
∆Ic

f−d

]
(12)
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where [∆V c
h−q ∆V c

h−d]
T = Hv[∆V c

q ∆V c
d ]

T and [∆V c
d−q ∆V c

d−d]
T = FD[∆V c

re f−q ∆V c
re f−d] . Hv

and FD are the delay and the feed-forward filter respectively. The converter and the grid AC
side of the network be modelled as:

[
∆Vf−q
∆Vf−d

]
=

[
∆Vf−q
∆Vf−d

]
+

[
R f +L f s ωL f
−ωL f R f +L f s

][
∆I f−q
∆I f−d

]
(13)

∆V = Zvsc∆I f (14)
∆V = Zc(∆Ig−∆I f ) (15)

Zc =

[
C f s C f ω

−C f ω C f s

]
(16)

∆Vg = ∆V +Zg∆Ig (17)

Zg =

[
Rg +Lgs ωLg
−ωLg Rg +Lgs

]
(18)

where ∆V = [∆Vq ∆Vd]
T , ∆I f = [∆I f−q ∆I f−d]

T , ∆Vg = [Vg−q Vg−d]
T , and ∆Ig = [∆Ig−q ∆Ig−d]

T .

4 STATE-SPACE MODEL

The state-space method represent the system in a set of linearized equations as in (20) and (21).
Time-domain equations in the abc reference frame have been derived in the qd reference frame
in the time domain by using (21).
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Figure 3: VSC grid-connected state-space model (a) equivalent diagram (b) state-space matrix

∆ẋ = A∆x+B∆u (19)
∆y = C∆x+D∆u (20)[

vq
vd

]
=

2
3

[
cosθ cos(θ − 2π

3 ) cos(θ + 2π

3 )

sinθ sin(θ − 2π

3 ) sin(θ + 2π

3 )

]va
vb
vc

 (21)

Where ∆x are the state variables, ∆y the output variables, and ∆u the input variables. The
transformation effect for ∆v described in the impedance model can be derived in state-space as
(22). Similar expression can be derived for ∆i f and ∆v f by changing the steady state values and
applying the inverse of the matrix where applicable.

Tqd =

[
cos(∆θ0) sin(∆θ0) −sin(∆θ0)∆v0−q + cos(∆θ0)∆v0−d
−sin(∆θ0) cos(∆θ0) −cos(∆θ0)∆v0−d + sin(∆θ0)∆v0−d

]
(22)
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The current references can be expressed in terms of a small signal variation in active power
(∆Pre f ) and AC voltage (∆Vre f ) references, used for real-time simulations as it will be described
in the results section.

∆icre f−q = Fol p(∆Pre f −∆P) (23)
∆icre f−d = Folv(∆Vre f −∆V ) (24)

Where ∆P and ∆V have been defined in (10) and (11). The inner loop’s state-space matrices are
in (25) and (26); and the AC side matrices are in (27) and (28).

Ail = [04x4] Bil = [I4x4|04x2] (25)

Cil =

[
−ki−il 0 ki−il 0

0 −ki−il 0 ki−il

]
Dil =

−kp−il 0 kp−il −ωL f 1 0
0 −kp−il ωL f kp−il 0 1

 (26)

Aac =


−1/C f 0 0 −ω 1/C f 0

0 −1/C f ω 0 0 1/C f
−R f /L f −ω 1/L f 0 0 0

ω −R f /L f 0 1/L f 0 0
0 0 −1/Lg 0 −Rg/Lg −ω

0 0 0 −1/Lg ω −Rg/Lg

 (27)

Bac =


0 0 0 0
0 0 0 0

−1/L f 0 0 0
0 −1/L f 0 0
0 0 1/Lg 0
0 0 0 1/Lg

 , Cac = [I6x6], Dac = [04x6] (28)

5 STUDY CASE

The performance of the models is tested in this section. First, a comparison between the state-
space and the non-linear model for a time simulation, and then a comparison of eigenvalues
and singular values for impedance based and state-space. Finally, the study of harmonic and
near-synchronous oscillatory resonances is studied for weak grids. The main parameters of the
system are described in the following table.

Table 1: System parameters

Parameter Symbol Value Units
Filter resistance R f 0.2372 Ω

Filter inductance L f 0.0750 H
Filter capacitance C f 10 µF
Feed-forward voltage filter τ f f v 1 ms
Delay τd 100 µs

6 RESULTS AND DISCUSSION

A simulation in the time domain has been carried out of the non-linear and the linear state-space
models for a SCR of the grid of 4. A step variation within the 15 percent in active power has
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been applied to both models as illustrated in Fig. 4.
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Figure 4: Non-linear and state-space models comparison (a) active power (b) AC voltage

The ratio of ∆vg/∆i f has been compared in eigenvalues and singular values between the state-
space and impedance based model. The results are displayed in Fig. 5. It can be seen that both
models have similar results.
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Figure 5: State-space and impedance based models comparison (a) eigenvalues (b) singular values

Oscillations have been observed in the AC voltage when the value of C f is reduced from 10 to
1 µs . By looking at the singular values, it can be determined that the frequency of oscillation
is approximately 26 Hz for sub-synchronous and around 755 Hz for harmonic oscillatory reso-
nances (the complete state-space model has been used for this simulation, not the one reduced
for the comparison part). The results by using singular values are shown in Fig. 6.
In addition, a sensibility analysis of the strength of the grid has been carried out. The SCR
of the grid has been reduced from 5 to 1, and the system becomes unstable (poles with the
real part above 0) from SCR below 3 as displayed in Fig. 7. Singular values indicate that
sub-synchronous oscillatory resonances of a frequency around 25 Hz are the main cause of
instability; furthermore, the linear model becomes unstable for 2.4 SCR which is higher than
the non-linear model (2.2 SCR).

7 CONCLUSION

The results of comparing the state-space and impedance based modelling show that there is a
good agreement between them. Further validation of the models has been achieved by compar-
ing the state-space modelling with a non-linear simulink model. However, along the process
some differences have been found. The most important ones are: the variation in active power
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and AC voltage references cannot be modelled in impedance based, and the controller charac-
teristics of the impedance based are "hidden" inside the impedance of the converter (Zvsc).
The stability assessment show that oscillatory resonances can be clearly identified with both
models, similar results have been obtained for time domain simulation and by looking at the
singular values for both models. By analyzing the eigenvalues, the instability of a system has
been identified with both models, but for a low SCR the linearized model (impedance based and
state-space) becomes unstable before the non-linear one.
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